

1. GENERAL INTRODUCTION

ATGII A-scan ultrasonic thickness gauge, Launch the ultrasonic through one side of the object, measure the digitized thickness real-timely, without cutting the object. As a subminiature measuring gauge, is researched and developed by our company according to the ultrasonic measuring theory. The features include fast response, non-destruction and precise measuring. In addition, A/B-scan waveform display is available by showing the echoes, which enables the more extensive measuring scope, more precise result and very little measurement error and finally makes the measuring processes more controllable.

ATGII A-scan ultrasonic thickness gauge, as the essential NDT instrument, can be widely applied in the detecting fields like manufacturing, metal processing, chemical industry, commercial inspecting and so on. It can not only precisely measures various kinds of panels and processing components, but also can monitor the thickness minus of tubes and pressure vessels in the manufacturing instruments after corrosion.

1.1 DESTRUCTION OF THE GAUGE

1.2 STANDARD PACKING

DESCRIPTION	Q'TY
ATG II THICKNESS GAGE	1
TS-510 PROBE AND CABLE	1
BATTERY	3
COUPLANT BOTTLE	1
CARRYING CASE	1
OPERATING MANUAL	1

1.3 OPTIONAL ACCESSORIES

HIGH-TEMPERATURE PROBE	CAST IRON PROBE
TS SERIES PROBE	STEP PIPE BLOCK
PROBE CABLE	STANDARD BLOCK

1.4 SPECIFICATIONS

SPECIFICATIONS	DESCRIPTION
SIZE (mm)	155×80×35
WEIGHT (g)	275(INCLUDING BATTERIES)
OPERATING TEMPERATURE ($^\circ C$)	-20~45
POWER	THREE 1.5V ALKALINE BATTERIES
BATTERY LIFE	40 HOURS
	320×240 DOT-MATRIC TRUE COLOR
DISFLAT	SCREEN
PROBE	DUAL ELEMENT PROBE
MEASURING RANGE(mm)	0.65-650
DIGITAL RESOLUTION(mm)	0.01
VELOCITY RANGE (m/s)	500~9999
DISPLAY UNIT	Inch/mm
LANGUAGE	ENGLISH
WAVEFORM DISPLAY MODE	FULL WAVE, +RF, -RF
PULSER VOLTAGE	150 NEGTIVE SPIKE
dB GAIN SETTING	12-52 dB
V-PASS CORRECTION	AUTOMATIC CALIBRATION
	NORMAL, MIN/MAX CAPTURE,
	DIFF/PR%, DIGITAL, ASCAN, B-SCAN

128,000 POINTS
8 STEP ADJUSTABLE
USB PORT
DATA VIEW, WIN 7, WIN 8

1.5 MAIN FEATURES

- 1. Parameter configuration interface is simple and easy to operate
- 2. A-scan waveform display
- 3. B-scan record display
- 4. Coupling condition is different with different color digital to display the thickness
- 5. Min-Max values when measuring.
- 6. High-Low limited thickness set and alarm
- 7. Difference mode: getting the difference between the actual value and the normal value as well as the percentage.
- 8. Metric (mm) and Inch unit display both available.
- 10. Waveform: full wave and RF display
- 11. Optional rectification mode: full wave, +RF and -RF
- 12. Languages: English
- 13. Battery operation time: approx. 40 hours
- 14. Can store 128000 point and 250 A-scan trace or B-scan Trace
- 15. Echo-Echo measurement the thickness of the specimen through the coating
- 16.Air Calbration (Optional function)
- 17.AGC (Automatic Gain Control)

2. KEYPAD FUNCTIONS

FIGURE 2.1 KEYBOARD FUNCTION DESCRIPTION

2.1 Powering On and Off

By pressing the power key to power on the instrument, pressing the power key to turn instrument power off.

2.2 Date and Time Setting up

By pressing the green arrow key under "NEXT" to switch between date and time, by pressing the yellow arrow keys to adjust date and time, then press the green arrow key under "FINISH" to completely settings.

Set the date time. Need go back to A-scan mode and store one A-scan

After save one A-scan, when turn off and turn on, the new set date and time will display.

3. OPERATION

3.1 PRESET OTHER SPECIFICATIONS

Press MODE key to enter the configure interface, which including many specification adjusting options like

3.2 SPECIFICATION ADJUSTING STEPS

FILE - Set the file name of the current measured value or waveform stored.

PROBE - Select using probe, 7 different probes insert

UNITS: Metric (mm) or Inch

VELOCITY: Enter correct specimen velocity

RECTIFICATE: RF, full wave

BRIGHTNESS:8 steps LCD brightness adjustmentTHICKNESS:Set specimen thickness set the normal thickness.
The real concrete application will be introduced in
the DIFFERENCE MODE.

MAX. ALARM: Set the maximum thickness alarm value. The

MIN. ALARM:	result will be displayed in red if the actual thickness is more than the maximum value preset. Set the maximum thickness alarm value. The result will be displayed in red if the actual thickness is more than the maximum value preset.
BSCAN MAX.: BSCAN MIN.:	Set the maximum of the thickness of the B scan. Set the minimum of the thickness of the B scan.
BSCAN FILE:	Storage of B-scan map with file no.

3.2 PRESET THE MATERIAL'S VELOCITY

1. With the unknown material velocity, calibration before testing is necessary.

The velocity ranges from 500m/s to 9999m/s.

Steps as follow:

- (1) Prepare a testing block of the same component with the testing object. Make the surface suitable for testing.
- (2) Measure the thickness of the block with a precision slide caliper.
- (3) Put some couplant on the surface of the testing block.
- (4) Measure the thickness of the testing block with the probe and keep coupling.
- (5) Press the direction keys to adjust the velocity to make the actual thickness value be same with the known value.

2. Adjust the velocity directly if the material velocity is known. See 3.1:

Enter Specimen Velocity

08:45 05-08-14		08:45 05-08-14		08:45 05-08-14	
FILE	F001	FILE	F001	FILE	F001
PROBE	T\$510	PROBE	TS510	PROBE	TS510
UNITS	mm	UNITS	mm	UNITS	mm
VELOCITY	5920m/s	VELOCITY	5920m/s	VELOCITY	5920 m/s
RECTIFICATE	RF	RECTIFICATE	RF	RECTIFICATE	RF
BRIGHTNESS		BRIGHTNESS	-	BRIGHTNESS	_
A-SCAN	NEXT	A-SCAN	NEXT	A-SCAN	NEXT

Press Mode key enter Configure File Manual Press arrow function key under NEXT to do selection

Press same key four times to move the cursor to VELOCITY to use 4 direction keys set up

Increase or decrease, 100 each step

> Increase or decrease, 10 each step.

3.3 CALIBRATION

Before measuring the thickness with ATG II, calibrating the gage with probe is necessary.

Calibration mode incl. 4 function

- Automatic probe recognized calibration without test block (air-calibration)
- Single point calibration (CAL-1P)
- 2 point calibration (CAL-2P)
- Velocity calibration TEST-V

3.4 AIR-CALIBRATION

ATG II Incl. very good calibration method called "Air-Calibration". Air-Calibration means the gauge will recognized the probe and calibrate automatically

to complete calibration.

Calibration Procedure as following

- 1. Select the Gauge probe and plug with IMG-4B PLUS
- 2. Press power on switch turn on the instrument
- 3. Set the date and time, after set correctly, press arrow key under finish entry A-scan display screen
- 4. Press Wey to configure manual
- 5. Press the green arrow key key to select probe type, after select

the probe, press key, then Long press key, at this stage screen display AIRCAL and wait it for few seconds, the gauge will calibration automatically without test block.

Note: To do the air-calibration, please make sure the probe front head are clean without any couplant. Otherwise couplant might be caused probe calibration wrong. After did the Air-Calibration, put the probe on the test block check the step. If values are correct, that you can start to do the thickness inspection. If not correct, do the air-calibration again.

3.5 Single Point Calibration

3.5.1 Use A-scan wave for calibration with AGC

- 1. Adjust the velocity to 5920m/s according to the method in chapter 3.1.
- 2. Long pressing the key. Select P-Zero to do the single point calibration. The screen shows *CALIBRATION: YES*
- 3. Press green arrow key will under "YES" into calibration mode.
- 4. Add the couplant on the zero block and put the probe make it

coupled completely Press arrow key until the screen echo waveform move and display into 4.00, the gain will automatically be adjusted by software as well.

- **5.** After the wave form move and display 4.00, the calibration was done and ready inspection.
- **6.** During the calibration, press the C key again to stop calibrating any time and restart to calibration again.

3.5.2 P-ZERO Single Point Calibration

- 1. Adjust the velocity to 5920m/s according to the method in chapter 3.1.
- 2. Press wey enter the calibration.
- 3. Press green arrow key under "P-ZERO" to progress calibration
- **4.** Add the couplant on the zero block (4mm) and put the probe on, until the screen display into 4.00, the gain will automatically be adjusted by software as well.
- **5.** After the wave form move and display 4.00, the calibration was done and ready inspection.
- 6. During the calibration, press key again to stop calibrating anytime and restart to calibration again.

3.6 Use Digital Calibration

mode

1. Press green arrow key would under "DIGITS" enter digital

- 2. Press key enter the calibration.
- 3. Press green arrow key where "P-ZERO" to progress calibration
- 4. Add the couplant on the zero block (4mm) and put the probe on, until the screen display into 4.00, the gain will automatically be adjusted by software as well.
- 5. After that, screen display 4.00, the calibration was done and ready inspection.
- 6. During the calibration, press kev again to stop calibrating anytime and restart to calibration again.

3.7 Two Point Calibration

Firstly add some couplant and put probe on lower step, for example

2.5mm thickness, set LOW-P =2.5mm. use vellow arrow

to set up thickness of step block, after display digital

under NEXT, then move to next stable press green arrow key step to do the second point calibration.

Secondly, put probe on thick step for example 20mm thickness. The gauge software set HIGH-P =20.00 mm. If the step thickness

different with this, use vellow arrow kevs

adjust it into 20.00 mm, Then press next, the display will show the actual step of thickness and velocity.

The gauge now ready for 2-point calibration and go back to A-scan mode.

Press green arrow key display range into 30 mm. under NEXT to adjust the screen

Move the probe to check different step thickness and make sure the calibration was correct. If it's ok, it will be ready to start inspection

Velocity calibration TEST-V

First follow single calibration, calibrate the gauge. After execute single point calibration, Under the Ascan display, press C key. Enter calibrate Mode. Press TEST-V under green arrow key. Enter TEST-V display

Put the block on already know standard thickness step (we use 20 mm thick for example).

Use 4 yellow arrow key adjust the T=20.00, then press green Key under TEST-V, The material Velocity will display.

The block material is 5914 m/s. This calibrate velocity will automatic entry the setting

3.8 DISPLAY MODES

There are five measuring display modes: normal mode, difference mode, limits value mode and A-scan mode. The thickness value, unit, velocity, and battery power indicator are all showed in these modes.

3.8.1 NORMAL MODE/DIGITAL THICKNESS VALUE MODE:

3.8.2 D-MODE

Press green arrow key under "D_MODE", when entered D-mode, it shows large digital display. It has showing Max. and Min. values of the inspection thickness measurement. This mode allows the customer to catch the real-time maximum and minimum thicknesses of material when test constantly. It shows the minimum and maximum values during the tests as well as the present thickness. Press Mode again, back to the Normal Digital Mode.

3.6 DIFFERENCE MODE INTERFACE

3.9 TURN ON/OFF AUTOMATIC GAIN CONTROL (AGC)

for

By long pressing the upper left corner green arrow key for few seconds to turn AGC on, the AGC will show on upper left corner of the screen.

And by long press the upper left corner green arrow key few seconds to turn AGC off, after that AGC will disappear.

3.10 DESCRIPTION AND ADJUST OF A-SCAN DISPLAY MODE

In the A-scan display model, press the bottom right corner NEXT

relevant green to select the specification that needs to be adjusted. Then press the direction keys to adjust the values. Up and down keys are used for small steps, while left and right for big steps increase or decrease.

GAIN adjusting the magnification factor of the echo signal,

	which allowing the manual adjust by unit 1db. This function is very useful for the testing of attenuation materials (like metal cast).
RANGE adjusting the range of waveform on the screen. T waveform can be compressed or spread visually and invisible if the display range is set incorrectly and t echo waveform is beyond the display area, howev the testing value can also be read correctly.	
DELAY	adjusting the beginning location of the waveform on the screen. The waveform can be moved horizontally visually and it's invisible if the delay is set incorrectly and the echo waveform is beyond the display area, however, the testing value can also be read correctly.
BLANK	making the waveform within the red blank line invalid, so that the influential harmful clutter can be blanked. In the real testing, wrong measurement due to the material may exist, such as near surface serious corrosion, AL material, inside defects, uneven component, lamination structure and so on. While adjusting the gain or gate can solve part of the problem, but only blank function can avoid the mistake when those clutter echoes are higher than the bottom echoes.

For example, if the gate set to low, the noise echo will be calculated by the software with wrong display. This is 10 mm test block but the display only show 1.56 mm

If we extend the black, the echo into the blank will not calculated and the display was correct value.

E-BALNK

E-blank was use to del. the interface echo between echo to echo. It most use only in echo-echo through coating measurement. Due to the layer thickness of coating material. It will generate different type of interface echo.

E-blank settings

When under E-E mode. Use green arrow key move high light to gate, Press Gren arrow key again. It will show blue e-blank. Use yellow arrow key can adjust the blank length

For example

The measurement with 0.5 mm	The echo display on mm coating
coating layer	layar

We use blank red bar del.. noise echo from first echo. Use blue bar E-black del. the noise echo between first and second echo.

Or we can extend blank gate de. First echo and use second and third echo measurement. See below

GATE	adjusting the height of the gate. Only when the waveform is higher than the gate, can the gage take the echo and
	show the value, and only when the GATE specification is

highlighted, can the gate show out. The first intersection point between the waveform and gate is pointed by a red arrow, which can help judging whether the thickness value is correct (the red arrow should point the front of the first bottom echo if correctly tested).

Gate threshold 06, The noise over the gate, Increase the gate threshold, the noise not over

3.11 Operate of B Scan

3.11.1 B-scan Mode

1		3
4	08:34 06-08-14 BSCAN 2.55 MIN 2.5	0 0 0 30 dB 55 mm 5
6		000.0 005.0 010.0 015.0 7
	P-E TS510 m	
8	A - SCAN SAVE	10

BSCAN MAP DESCRIPTION

- 1. Date
- 2. File name
- 3. Gain
- 4. Min.thickness measurement
- 5. Thickness of last measurement

- 6. B-scan display map
- 7. Min to max. thickness of B-scan map scale
- 8. P-E (pulse echo mode)
- 9. Probe type
- 10. Unit display

3.11.2 Introdue B-Scan

ATGII thickness gauge has time-base B-scan function. Move the

probe along the work piece surface, then the profile of the work piece will display on the screen, observe the underside of the work piece. Very good for corrosion inspection

When remove the probe from work piece, it could be automatically capture a minimum value of the B-scan image, and indicate the position of the minimum by a red value display. You can see any point thickness value of the B-scan image by moving the pointer.

The B-scan display will stop if lost contact or couplant during inspection. If not capture the good B-scan image, just press green

arrow key

under repeat

3.12 REAL CASES ANALYSIS

- 1. When measuring the thickness, there always happens that over small gains prevent the precise results. As showed in the following figure, the thickness of the testing object is about 5mm, but as for the over small gain, the measuring result is 10.77mm as the first echo has not broken the gate and the gate locates the second echo automatically. This is obviously an incorrect result, and customers can pull up the echo by enhance the gain to make the first echo broke the gate and finally realize the right measurement.
- 2. There are some defects in the testing object, and the gate locks the defect echoes. As showed in the following figure, the thickness of the testing object is about 10mm, but as there are obvious defects (the defect echoes are showed on the screen) and the gate locks the defect echoes which have broken the gate, thus, the testing result showed is the thickness of the defect area. The right measurement can be realized by making the gate above the defect echoes.

3. If there are some defaces in the testing object and the gate locks the defect echoes, the measuring result will be the thickness of the defect area. In this condition, customer can use the BLANK function to get a right testing result. As showed in the following figure, the line on the bottom of the screen, which we use to shield the defect echoes, indicates the blank confines and makes the gate not catch the echoes within the blank confines, thus, the right thickness value is acquired.

3.13 HOW TO SAVE THE LAST SETTING

When turn on the gauge. The display will show the last save date and

time. Press green arrow key

to move cursor and use 4 yellow

arrow keys

to modify the correct date and

time. After completed it, press left green arrow key enter to A-scan display.

Put the probe on 4 mm block get one a-scan display. Remove the probe. Press middle

Green arrow key to save the setting. When turn off the gauge or run out the battery, it will start with this current setting when next time you turn on.

4. SAVE AND RECALL

4.1 SAVE DIGITAL DATA

Press power key turn on the gauge. First setup the right date and time.

Press finish to enter the Ascan display

Add block some couplant and put the probe on the test block. Press

key, enter calibration display. Press green arrow key under "CAL-1P", wait and calibrate the gauge. After calibration, press

green arrow key under "DIGTAL", enter to digital display mode. Put probe on step black 1=20 mm, after display stable, press green

arrow key under "SAVE", now the F001A01 saved data Move probe to 2=10.00 mm, after display stable, press save, now the F001A02 saved data. Move the probe to 3=5.00, after display stable, press save, now the F001A03 save data. Move the probe to 4=2.50, after display stable, press save, now the F001A04 save data.

Now the F001 total save 4 point (A01,A02,A03,A04). 4.2 SAVE A-SCAN PULSE

For example put probe on step block 10 mm thick, after display stable to remove the probe from test block, then press green arrow

key while while the step block 5 mm thick to do measurement, after display stable to remove the probe from test

block, then press green arrow key

A

under "SAVE" and so on.

4.3 SAVE B-SCAN VALUES

2.55 M	IN	2.55 mm
		005.0
D.E	T\$510	025.0
A - SCAN	SAVE	REPEAT

Put probe on object block, for example to do measurement from thicker move to thin, that we did measurement from 20mm to 2.5mm

to capture the value, then press green arrow key to save it.

under "SAVE"

4.4 RECALL DATA

By pressing key to enter configure manual, press green arrow key under "NEXT", to move cursor as shown on F001. Use 4 yellow arrow keys in the conditional to choose the File no. to review. After select the File no. to review, press green arrow key under "OPEN" The display will change and show all F001 storage data. Use 4 yellow arrow keys to move square cursor to view the data.

4.6 RECALL B-SCAN VALUES

ſ	10.38 14-08-14	mm	
L	THICKNESS	025	
ł	MAX-ALARM	025	
ł	MIN-ALARM	000	
L	BSCAN MAX	025	
L	BSCAN MIN	000	
I	BSCAN FILE	000	
T	HOME BSCAN	NEXT	

By pressing enter to manual, then press green arrow key under "OPEN" to open B-SCAN files.

4.7 DELETE A-SCAN FILES

4.8 DELETE DIGITAL FILES

clean all of data. The file F001 will empty and waiting entry new data.

5. RESTORING THE INSTRUMENT

Long press the middle of green arrow key key then press power

key and hold green arrow key for a while to restore the instrument, the settings and all stored files will be cleared out.

6. ATOMATIC GAIN CONTROL (AGC)

Long press the upper left corner green arrow key for few seconds to turn AGC on, when AGC is on the gain will increase and

decrease automatically by software, then long press the upper left

corner green arrow key

for few seconds to turn AGC off.

7. I/O FEATURES AND COMMUNICATION

7.1 CONNECTING THE ATG-II TO A PC

Click "USB Drive" button to install USB drivers from your PC.

Ensuring your virtual COM port by click the "Search COM Port" button, to check which COM port has been used for the connection, for example COM3 has been connected to my PC.

Select Gauge model to "**ATG-II**", select correct virtual COM Port connection that has been established, set Baud Rate to "**57600**", then click Test button to check whether the Port is efficiency.

Ensuring virtual COM Port connection is ready for communicating, to click Save-OK button.

7.2 COMMUNICATING ATG-II FILES TO PC

1. COMMUNICATING DIGITAL DATA

2.

						fig. res	Dance	Martiner and	rendon De		and links				
								I Press Lin	Longing and	al to re	minn det			eeing!	
						100		-	-						
							13.83		1.00			1.00			
	× 1				and the second se							12	12		
NUM 1449-14			100-14	100.00	1228 1440-14					1.00		1.00			
FILE 7001		001	•	8	c	14			8.88					0.00	
2808F T\$518		04	20.02	0.00	0.00	-		1.00							
Insta	-	05	10.07	0.00	0.00				1.44			1.00	8.66		
			45.55	0.00	0.00	 					- 12		12		
VELOCITY 5920 m/s			10.03	0.00				22	12		1.2	12	12		
RESOLUTION XXX		07	10.03	0.00	0.00										
BRIGHTNESS		08	10.03	0.00	0.00	118	8.00								
HOME OPEN NEXT		RET	URN	coev. T	CLEAR	10		6.00	8.60	6.00	6.00	8,60	8.80	8,99	
	·		_							1.2		12	12	12	
						A		Residences	-		-		area a	-	

By pressing key, enter to manual to press green arrow key under "OPEN", to open stored files, then press green arrow key under "COPY" on instrument, meanwhile click "Receive" button on PC for receiving data, all data will be shared to PC.

3. COMMUNICATING A-SCAN PULSE

By pressing green arrow key

under "SAVE" in A-scan mode, to

open stored files, then press green arrow key under "COPY" on instrument, meanwhile click "Receive" button on PC for receiving data, A-scan pulse will be shared to PC.

4. COMMUNICATING B-SCAN VALUES

By pressing key twice, enter to manual to press green arrow key under "OPEN", to open stored B-scan files, then press green arrow key under "COPY" on instrument, meanwhile click "Receive" button on PC for receiving data, all data will be shared to PC.

7.3 EXPORTING MEASUREMENT REPORTS

To select from manual, click File \rightarrow Export \rightarrow Word on PC, to generate thickness measurement report in WORD format, and so on whatever A-scan, B-scan or digital data.

8. MEASUREMENT APPLYING SKILLS

8.1 MEASURING ERROR PREVENTION

1. MATERIAL INFLUENCE

In many materials like nonmetal or plastic, the change of velocity is obvious, thus, the accuracy of measuring is influenced. If the material of the object is not isotropic, the velocity varies in different directions. In this condition, the preset velocity should be the average value among the testing range, which can be acquired through testing a block with the same velocity as the object average velocity value.

2. ULTRA-THIN MATERIAL

When the thickness of the testing object is below the minimum value of the probe limit, the result may be incorrect, and the thickness can be acquired by contracting the blocks when necessary.

When testing ultra-thin materials, sometimes DUAL-ECHO happens, which is a kind of incorrect result and the result is twice of the real one. Another incorrect result called PULSE ENVELOPE AND CIRCULATORY JUMPING, which means that the testing result is higher than the real one. In order to prevent this kind of error, when testing the object with the appropriate thickness as the minimum limit and judgment is available, customer should pay attention to the waveform displayed and adjust the gain or use blank function.

3. ROUGHNESS INFLUENCE

The extremely rough surface may arouse measuring error or even reading lost, therefore, the surface of the material should be smooth before measuring through polishing, filing, grinding or using high-viscosity couplant.

4. SURFACE OF THE ROUGH MACHINE PROCESSING

The regular slugs after rough machine processing (such as lathing or planning) on the surface of the work-piece may also arouse measuring errors. Except for the compensation methods mentioned above in 4, adjusting the angle between and sound insulating wall (the metal film through the center of the probe bottom) of the probe and the slugs of the material and making them perpendicular or parallel with each other to get the minimum reading as the thickness value is also efficient.

8.2 MEASURING METHODS

1. SINGLE-POINT MEASUREMENT

Using the probe to measure a random point on the surface of the object, the reading displayed is the thickness value.

2. 2-POINT MEASUREMENT

Measuring twice at the same spot on the object, and making the probe inclines 90° in the second measurement, the thinner reading is the thickness value.

3. MULTIPLE-POINT MEASUREMENT

When the reading is unstable, measuring several times within a circle with a certain point as center and 30mm as diameter, the thinnest reading is the thickness value.

4. CONTINUOUS MEASUREMENT

Taking continuous measurements along a specified path at intervals of 5mm or less according to the single measurement method, the thinnest reading is the thickness value.

8.3 PIPE WALL MEASUREMENT

The reading will change regularly when the split plane of the probe is along with or perpendicular to the pipe axis and the thinnest measuring reading is the thickness value.

When the diameter is big, the split plane of the probe should be perpendicular to the pipe axis, while the diameter is small, the respective measurements should be both along with and perpendicular to the pipe axis and the thinner reading is the thickness value.

8.4 CAST MEASUREMENT

It's difficult to measure cast work-piece because there are some special features of the cast measurement: the rough grain of cast material, the loose structure, and the rough surface measuring status. So there are some tips to follow:

1. Use low frequency probe like TS210 or TS112 in our company.

2. When measuring the non-processing surface of some cast work-piece, high viscosity couplant such as machine oil, grease or water glass is needed.

3. Calibrate the sound velocity with the standard block that shares the same material and same measuring direction with the testing object.

9. SELF EASY MAINTENANCES

9.1 POWER SOURCE INSPECTION

If the gage cannot be turned on, please check and change the batteries first.

The steps of changing batteries are as follow:

- 1. Turn off the gage.
- 2. Loose the screws and open the battery cassette.
- **3.** Take out the batteries and put in new ones. Take care of the polarity.

Attention: as even when the gage is turned off, there is still weak power consume, please take the batteries out when sparing the gage for long, or the gage can be power off and cannot be turn on.

9.2 CONSIDERATIONS

- Please be cautious of the zero block's getting rust as couplant will be spread on the surface of it when calibrating the gage. After using, clean the zero block. Avoid dripping sweat on the gage in high temperature. Some grease spreading on the surface of zero block is useful to avoid rusting if the gage will be spared for long. Wipe the grease out when reusing.
- **2.** As caustic liquid such as alcohol and diluents is corrosive to the cover and
- 3. the window, so wipe them with little amount of clean water.
- **4.** Avoid heavy scratch on the surface of the probe and make the measurement lightly. With a worn probe, the indicating value will be unstable. Please change probe in that case.

9.3 MAINTENANCES

Contact with the maintaining department of our company if the following problems appears:

- 1. Components damage and the gage fail to measure.
- 2. The display of the screen is disordered.
- 3. The measuring error is abnormally big in normal situation.
- 4. Keyboard operating is disordered or keyboard doesn't work.

As the ATG II ultrasonic thickness gage is high-tech product, the maintaining work should be made by professional operator and please avoid self-acting operations.

APPENDIX: SOUND VELOCITIES OF COMMON MATERIALS

	Sound Velocity						
Material	in/µs	m/s					
Aluminum	0.250	6350					
Bismuth	0.086	2184					
Brass	0.173	4394					
Cadmium	0.109	2769					
Cast Iron	0.180(apprx)	4572					
Constantan	0.206	5232					
Copper	0.184	4674					
Epoxy Resin	0.100(apprx)	2540					
German Silver	0.187	4750					
Glass, Crown	0.223	5664					
Glass, Flint	0.168	4267					
Gold	0.128	3251					
Ice	0.157	3988					
Iron	0.232	5893					
Lead	0.085	2519					
Magnesium	0.228	5791					
Mercury	0.057	1448					
Nickel	0.222	5639					
Nylon	0.102(apprx)	2591					
Paraffin	0.087	2210					
Platinum	0.156	3962					
Plexiglass	0.106	2692					
Polystyrene	0.092	2337					
Porcelain	0.230(apprx)	5842					
PVC	0.094	2388					
Quartz Glass	0.222	5639					
Rubber, vulcanized	0.091	2311					
Silver	0.142	3607					

Steel, common	0.233	5918			
Steel, stainless	0.223	5664			
Stellite	0.275(apprx)	6985			
Teflon	0.056	1422			
Tin	0.131	3327			
Titanium	0.240	6096			
Tungsten	0.210	5334			
Zinc	0.166	4216			
Water	0.058	1473			